#
# Recover ETHPOP population data
# using ETHPOP in/out flow data
# using per capita proportions
#
# N Green
#


library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
library(readxl)
library(readr)
library(tibble)
library(ggplot2)
library(demoSynthPop)


# model UK-born/non UK-born
##TODO:

# load ONS starting population
dat_ons <- read_ONS_census2011()
## New names:
## * `` -> ...1
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * ...
## Warning: The `x` argument of `as_tibble.matrix()` must have column names if `.name_repair` is omitted as of tibble 2.0.0.
## Using compatibility `.name_repair`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
# load ETHPOP cleaned data
dat_pop <- read_csv("~/R/cleanETHPOP/output_data/clean_pop_Leeds2.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   X1 = col_double(),
##   age = col_double(),
##   ETH.group = col_character(),
##   sex = col_character(),
##   pop = col_double(),
##   year = col_double()
## )
##TODO: have we got missing data for Leeds2?
## does it make sense to have per-capita inmigration?...

dat_inflow <- read_csv("~/R/cleanETHPOP/output_data/clean_inmigrants_Leeds2.csv",
                       col_types = list(sex = col_character()))
## Warning: Missing column names filled in: 'X1' [1]
dat_outflow <- read_csv("~/R/cleanETHPOP/output_data/outmigrants_per_capita_Leeds2.csv",
                        col_types = list(sex = col_character())) %>%
  rename(outmigrants = outmigrants_per_capita)
## Warning: Missing column names filled in: 'X1' [1]
dat_births <- read_csv("~/R/cleanETHPOP/output_data/births_per_capita_Leeds1.csv",
                       col_types = list(sex = col_character()))
## Warning: Missing column names filled in: 'X1' [1]
dat_deaths <- read_csv("~/R/cleanETHPOP/output_data/deaths_per_capita_Leeds1.csv",
                       col_types = list(sex = col_character())) %>%
  rename(deaths = deaths_per_capita)
## Warning: Missing column names filled in: 'X1' [1]
res <-
  run_model(dat_pop,
            dat_births,
            dat_deaths,
            dat_inflow,
            dat_outflow,
            is_prop = TRUE)
## year 2012
## year 2013
## year 2014
## year 2015
## year 2016
## year 2017
## year 2018
## year 2019
## year 2020
## year 2021
## year 2022
## year 2023
## year 2024
## year 2025
## year 2026
## year 2027
## year 2028
## year 2029
## year 2030
## year 2031
## year 2032
## year 2033
## year 2034
## year 2035
## year 2036
## year 2037
## year 2038
## year 2039
## year 2040
## year 2041
## year 2042
## year 2043
## year 2044
## year 2045
## year 2046
## year 2047
## year 2048
## year 2049
## year 2050
## year 2051
## year 2052
## year 2053
## year 2054
## year 2055
## year 2056
## year 2057
## year 2058
## year 2059
## year 2060
## year 2061
sim_pop <- bind_rows(res)



########
# plot #
########

year_selection <- c(2011, 2020, 2030, 2040, 2050, 2060)

# new data
sim_plot <-
  sim_pop %>%
  filter(sex == "M",
         ETH.group == "BAN",
         year %in% year_selection) %>%
  mutate(year = as.factor(year))
  # mutate(eth_sex_year = interaction(ETH.group, sex, year))

# original data
dat_plot <-
  dat_pop %>%
  filter(sex == "M",
         ETH.group == "BAN",
         year %in% year_selection) %>%
  mutate(year = as.factor(year))


p1 <-
  ggplot(sim_plot, aes(x=age, y=pop, colour = year)) +
  geom_line() +
  ylim(0, 11000)

p2 <-
  ggplot(dat_plot, aes(x=age, y=pop, colour = year)) +
  geom_line() +
  ylim(0, 11000)

gridExtra::grid.arrange(p1, p2)
## Warning: Removed 13 row(s) containing missing values (geom_path).

## differences: original - new data

diff_plot <-
  merge(dat_plot, sim_plot,
        by = c("age", "ETH.group", "sex", "year"),
        suffixes = c(".eth", ".sim")) %>%
  mutate(diff_pop = pop.eth - pop.sim,
         scaled_diff = diff_pop/pop.eth)

p3 <-
  ggplot(diff_plot, aes(x=age, y=diff_pop, colour = year)) +
  ggtitle("ETHPOP - estimated populations") +
  geom_line()

p3

# scale proportional to the population size
p4 <-
  ggplot(diff_plot, aes(x=age, y=scaled_diff, colour = year)) +
  ggtitle("(ETHPOP - estimated populations)/ETHPOP") +
  geom_line()

p4